Keywords: Backward Sampling, Goal-Conditioned Learning, Generative Flow Networks
TL;DR: A simple yet efficient technique named retrospective backward synthesis for sample-efficient goal-conditioned GFlowNets training.
Abstract: Generative Flow Networks (GFlowNets), a new family of probabilistic samplers, have demonstrated remarkable capabilities to generate diverse sets of high-reward candidates, in contrast to standard return maximization approaches (e.g., reinforcement learning) which often converge to a single optimal solution. Recent works have focused on developing goal-conditioned GFlowNets, which aim to train a single GFlowNet capable of achieving different outcomes as the task specifies. However, training such models is challenging due to extremely sparse rewards, particularly in high-dimensional problems. Moreover, previous methods suffer from the limited coverage of explored trajectories during training, which presents more pronounced challenges when only offline data is available. In this work, we propose a novel method called \textbf{R}etrospective \textbf{B}ackward \textbf{S}ynthesis (\textbf{RBS}) to address these critical problems. Specifically, RBS synthesizes new backward trajectories in goal-conditioned GFlowNets to enrich training trajectories with enhanced quality and diversity, thereby introducing copious learnable signals for effectively tackling the sparse reward problem. Extensive empirical results show that our method improves sample efficiency by a large margin and outperforms strong baselines on various standard evaluation benchmarks.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9364
Loading