Multi-objective optimization via equivariant deep hypervolume approximationDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Multi-objective optimization, Hypervolume approximation, Geometric deep learning, Bayesian optimization, Evolutionary algorithms
TL;DR: Hypervolume approximation using permutation invariant, scaling equivariant neural network
Abstract: Optimizing multiple competing objectives is a common problem across science and industry. The inherent inextricable trade-off between those objectives leads one to the task of exploring their Pareto front. A meaningful quantity for the purpose of the latter is the hypervolume indicator, which is used in Bayesian Optimization (BO) and Evolutionary Algorithms (EAs). However, the computational complexity for the calculation of the hypervolume scales unfavorably with increasing number of objectives and data points, which restricts its use in those common multi-objective optimization frameworks. To overcome these restrictions, previous work has focused on approximating the hypervolume using deep learning. In this work, we propose a novel deep learning architecture to approximate the hypervolume function, which we call DeepHV. For better sample efficiency and generalization, we exploit the fact that the hypervolume is scale equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives and the samples, by using a deep neural network that is equivariant w.r.t. the combined group of scalings and permutations. We show through an ablation study that including these symmetries leads to significantly improved model accuracy. We evaluate our method against exact, and approximate hypervolume methods in terms of accuracy, computation time, and generalization. We also apply and compare our methods to state-of-the-art multi-objective BO methods and EAs on a range of synthetic and real-world benchmark test cases. The results show that our methods are promising for such multi-objective optimization tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
11 Replies

Loading