Keywords: Generative Models, Diffusion Models, Reinforcement Learning, Hierarchical RL
TL;DR: This study introduces and validates a new RL-based finetunning methodology that enhances diffusion models using a sliding window selection scheme, improving reward alignment while preserving model diversity.
Abstract: Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives. In the case of diffusion models (DMs), though RL training improves alignment from early timesteps, critical issues such as training instability and mode collapse arise. We address these drawbacks by exploiting the hierarchical nature of DMs: we train them dynamically at each epoch with a tailored RL method, allowing for continual evaluation and step-by-step refinement of the model performance (or alignment). Furthermore, we find that not every denoising step needs to be fine-tuned to align DMs to downstream tasks. Consequently, in addition to clipping, we regularise model parameters at distinct learning phases via a sliding-window approach. Our approach, termed Hierarchical Reward Fine-tuning (HRF), is validated on the Denoising Diffusion Policy Optimisation method, where we show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11032
Loading