Abstract: Person re-identification (re-id) has received ever-increasing research focus, because of its important role in video surveillance applications. This paper addresses the re-id problem between visible images of color cameras and infrared images of infrared cameras, which is significant in case that the appearance information is insufficient in poor illumination conditions. In this field, there are two key challenges, i.e., the difficulty to locate the discriminative information to re-identify the same person between visible and infrared images, and the difficulty to learn a robust metric for such large-scale cross-modality retrieval. In this paper, we propose a novel human body parts assistance network (BANet) to tackle the two challenges above. BANet mainly focuses on extracting discriminative information and learning robust features by leveraging the human body part cues. Extensive experiments demonstrate that the proposed approach outperforms the baseline and the state-of-the-art methods.
Loading