Optimality of Matrix Mechanism on $\ell_p^p$-metric

Published: 22 Jan 2025, Last Modified: 25 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: differential privacy
Abstract: In this paper, we introduce the $\ell_p^p$-error metric (for $p \geq 2$) when answering linear queries under the constraint of differential privacy. We characterize such an error under $(\epsilon,\delta)$-differential privacy in the natural add/remove model. Before this paper, tight characterization in the hardness of privately answering linear queries was known under $\ell_2^2$-error metric (Edmonds et al. 2020) and $\ell_p^2$-error metric for unbiased mechanisms in the substitution model (Nikolov et al. 2024). As a direct consequence of our results, we give tight bounds on answering prefix sum and parity queries under differential privacy for all constant $p$ in terms of the $\ell_p^p$ error, generalizing the bounds in Hhenzinger et al. for $p=2$.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7219
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview