Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: theorem extraction, mathematical reasoning, theorem proving
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We extract useful mathematical theorems using graph neural networks, evaluating on several downstream tasks to demonstrate their great utility.
Abstract: Human mathematicians are often good at recognizing modular and reusable theorems that make complex mathematical results within reach. In this paper, we propose a novel method called theoREm-from-prooF extrACTOR (REFACTOR) for training neural networks to mimic this ability in formal mathematical theorem proving. We show on a set of unseen proofs, REFACTOR is able to extract 19.6\% of the theorems that humans would use to write the proofs. When applying the model to the existing Metamath library, REFACTOR extracted 16 new theorems. With newly extracted theorems, we show that the existing proofs in the MetaMath database can be refactored. The new theorems are used very frequently after refactoring, with an average usage of 733.5 times, and help shorten the proof lengths. Lastly, we demonstrate that the prover trained on the new-theorem refactored dataset proves more test theorems and outperforms state-of-the-art baselines by frequently leveraging a diverse set of newly extracted theorems. Code can be found at https://github.com/jinpz/refactor.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Submission Number: 8011
Loading