Glinthawk: A Two-Tiered Architecture for High-Throughput LLM Inference

Published: 2025, Last Modified: 17 Sept 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We introduce Glinthawk, an architecture for offline Large Language Model (LLM) inference. By leveraging a two-tiered structure, Glinthawk optimizes the utilization of the high-end accelerators ("Tier 1") by offloading the attention mechanism to lower-end compute tier ("Tier 2"). This separation allows the memory demand of the attention, known as the key-value cache, to scale independently from the model weights, enabling larger batch sizes and more efficient accelerator usage. Prototyped with NVIDIA T4 GPUs and standard CPU VMs, Glinthawk improves throughput by $5.9\times$ and reduces cost of generation by $2.8\times$, compared to paged attention baselines. For long sequence lengths, it achieves $16.3\times$ throughput improvement at $2.4\times$ less cost. Our evaluation shows that this architecture can tolerate moderate network latency with minimal performance degradation, making it highly effective for latency-tolerant, throughput-focused applications such as batch processing. The prototype is publicly available at https://github.com/microsoft/glinthawk.
Loading