Reliable Test-Time Adaptation via Agreement-on-the-Line

Published: 28 Oct 2023, Last Modified: 02 Apr 2024DistShift 2023 PosterEveryoneRevisionsBibTeX
Keywords: Test-time adaptation;Agreement-on-the-line;Accuarcy-on-the-line;Error estimation;Hyperparameter tuning;Calibration
TL;DR: TTA shows strong agreement-on-the-line trends, which enables the reliable TTA in terms of accuracy estimation, hyperparameter optimization, and calibration, without access to labels.
Abstract: Test-time adaptation (TTA) methods aim to improve robustness to distribution shifts by adapting models using unlabeled data from the shifted test distribution. However, there remain unresolved challenges that undermine the reliability of TTA, which include difficulties in evaluating TTA performance, miscalibration after TTA, and unreliable hyperparameter tuning for adaptation. In this work, we make a notable and surprising observation that TTAed models strongly show the agreement-on-the-line phenomenon (Baek et al., 2022) across a wide range of distribution shifts. We find such linear trends occur consistently in a wide range of models adapted with various hyperparameters, and persist in distributions where the phenomenon fails to hold in vanilla model (i.e., before adaptation). We leverage these observations to make TTA methods more reliable from three perspectives: (i) estimating OOD accuracy (without labeled data) to determine when TTA helps and when it hurts, (ii) calibrating TTAed models again without any labeled data, and (iii) reliably determining hyperparameters for TTA without any labeled validation data. Through extensive experiments, we demonstrate that various TTA methods can be precisely evaluated, both in terms of their improvements and degradations. Moreover, our proposed methods on unsupervised calibration and hyperparameters tuning for TTA achieve results close to the ones assuming access to ground-truth labels, in both OOD accuracy and calibration error.
Submission Number: 67