Keywords: Healthcare AI, Vision--Language Models, MedGemma, Model Cards, MLOps, Early termination, Confidence thresholds, Selective prediction
Track: Proceedings
Abstract: Clinical ML workflows are often fragmented and inefficient: triage, task selection, and model deployment are handled by a patchwork of task-specific networks. These pipelines are rarely aligned with data-science practice, reducing efficiency and increasing operational cost. They also lack data-driven model identification (from imaging/tabular inputs) and standardized delivery of model outputs. We present a framework that employs a single vision-language model (VLM) in two complementary, modular roles.
First (Solution 1): the VLM acts as an aware model-card matcher that routes an incoming image to the appropriate specialist model via a three-stage workflow (modality -> primary abnormality -> model-card ID). Reliability is improved by (i) stage-wise prompts enabling early termination via "None"/"Other" and (ii) a calibrated top-2 answer selector with a stage-wise cutoff. This raises routing accuracy by +9 and +11 percentage points on the training and held-out splits, respectively, compared with a baseline router, and improves held-out calibration (lower Expected Calibration Error, ECE).
Second (Solution 2): we fine-tune the same VLM on specialty-specific datasets so that one model per specialty covers multiple downstream tasks, simplifying deployment while maintaining performance. Across gastroenterology, hematology, ophthalmology, pathology, and radiology, this single-model deployment matches or approaches specialized baselines.
Together, these solutions reduce data-science effort through more accurate selection, simplify monitoring and maintenance by consolidating task-specific models, and increase transparency via per-stage justifications and calibrated thresholds. Each solution stands alone, and in combination they offer a practical, modular path from triage to deployment.
General Area: Applications and Practice
Specific Subject Areas: Deployment, Medical Imaging, Explainability & Interpretability, Foundation Models
Data And Code Availability: No
Ethics Board Approval: No
Entered Conflicts: I confirm the above
Anonymity: I confirm the above
Submission Number: 26
Loading