G2D2: Gradient-Guided Discrete Diffusion for Inverse Problem Solving

TMLR Paper4694 Authors

18 Apr 2025 (modified: 30 May 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Recent literature has effectively leveraged diffusion models trained on continuous variables as priors for solving inverse problems. Notably, discrete diffusion models with discrete latent codes have shown strong performance, particularly in modalities suited for discrete compressed representations, such as image and motion generation. However, their discrete and non-differentiable nature has limited their application to inverse problems formulated in continuous spaces. This paper presents a novel method for addressing linear inverse problems by leveraging generative models based on discrete diffusion as priors. We overcome these limitations by approximating the true posterior distribution with a variational distribution constructed from categorical distributions and continuous relaxation techniques. Furthermore, we employ a star-shaped noise process to mitigate the drawbacks of traditional discrete diffusion models with absorbing states, demonstrating that our method performs comparably to continuous diffusion techniques with less GPU memory consumption.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Yingnian_Wu1
Submission Number: 4694
Loading