Privacy-preserving Spatial Dataset Search in Cloud

Published: 01 Jan 2024, Last Modified: 30 Jan 2025CIKM 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The development of cloud computing has met the growing demand for dataset search in the era of massive data. In the field of spatial dataset search, the high prevalence of sensitive information in spatial datasets underscores the necessity of privacy-preserving search processing in the cloud. However, existing spatial dataset search schemes are designed on plaintext datasets and do not consider privacy protection in search processing. In this paper, we first propose a privacy-preserving spatial dataset search scheme. The density distribution-based similarity model is proposed to measure the similarity between spatial datasets, and then the order-preserving encrypted similarity is designed to achieve secure similarity calculation. With the above idea, the baseline search scheme (PriDAS) is proposed. To improve the search efficiency, a two-layer index is designed to filter candidate datasets and accelerate the similarity calculation between datasets. By using the index, the optimized search scheme (PriDAS+) is proposed. To analyze the security of the proposed schemes, the game simulation-based proof is presented. Experimental results on three real-world spatial data repositories with 100,000 spatial datasets show that PriDAS+ only needs less than 0.4 seconds to accomplish the search processing.
Loading