EigenBench: A Comparative Behavioral Measure of Value Alignment

ICLR 2026 Conference Submission21269 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: value alignment, Bradley-Terry model, EigenTrust, model disposition, constitutional AI
Abstract: Aligning AI with human values is a pressing unsolved problem. To address the lack of quantitative metrics for value alignment, we propose EigenBench: a black-box method for comparatively benchmarking language models’ values. Given an ensemble of models, a constitution describing a value system, and a dataset of scenarios, our method returns a vector of scores quantifying each model’s alignment to the given constitution. To produce these scores, each model judges the outputs of other models across many scenarios, and these judgments are aggregated with EigenTrust (Kamvar et al., 2003), yielding scores that reflect a weighted consensus judgment of the whole ensemble. EigenBench uses no ground truth labels, as it is designed to quantify subjective traits for which reasonable judges may disagree on the correct label. Hence, to validate our method, we collect human judgments on the same ensemble of models and show that EigenBench’s judgments align closely with those of human evaluators. We further demonstrate that EigenBench can recover model rankings on the GPQA benchmark without access to objective labels, supporting its viability as a framework for evaluating subjective values for which no ground truths exist.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 21269
Loading