Causal Graph Transformer for Treatment Effect Estimation Under Unknown Interference

Published: 22 Jan 2025, Last Modified: 18 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Causal Graph Transformer, Networked Interference, Unknown Interference Graph, Peer Effects, Treatment Effects Estimation
Abstract: Networked interference, also known as the peer effect in social science and spillover effect in economics, has drawn increasing interest across various domains. This phenomenon arises when a unit’s treatment and outcome are influenced by the actions of its peers, posing significant challenges to causal inference, particularly in treatment assignment and effect estimation in real applications, due to the violation of the SUTVA assumption. While extensive graph models have been developed to identify treatment effects, these models often rely on structural assumptions about networked interference, assuming it to be identical to the social network, which can lead to misspecification issues in real applications. To address these challenges, we propose an Interference-Agnostic Causal Graph Transformer (CauGramer), which aggregates peers information via $L$-order Graph Transformer and employs cross-attention to infer aggregation function for learning interference representations. By integrating confounder balancing and minimax moment constraints, CauGramer fully incorporates peer information, enabling robust treatment effect estimation. Extensive experiments on two widely-used benchmarks demonstrate the effectiveness and superiority of CauGramer. The code is available at https://github.com/anpwu/CauGramer.
Supplementary Material: zip
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2331
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview