Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation

Published: 16 Jan 2024, Last Modified: 19 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Reinforcement learning theory, General function approximation, Infinite-horizon Average-reward MDPs, Sample efficiency
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure --- average-reward generalized eluder coefficient (AGEC) --- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear $\tilde{\mathcal{O}}(\mathrm{poly}(d, \mathrm{sp}(V^*)) \sqrt{T\beta} )$ regret, where $d$ and $\beta$ correspond to AGEC and log-covering number of the hypothesis class respectively, $\mathrm{sp}(V^*)$ is the span of the optimal state bias function, $T$ denotes the number of steps, and $\tilde{\mathcal{O}} (\cdot) $ omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 4471