Abstract: Fingerprint recognition systems verify the identity of individuals and provide access to secure information in various commercial applications. However, with advancements in artificial intelligence, fingerprint-based security methods are vulnerable to attack. Such a breach has the potential to compromise confidential, private and valuable information. In this paper, we attack a state-of-the-art fingerprint recognition system based on transfer learning. Our approach uses attribution analysis to identify the fingerprint region crucial to correct classification, and then perturbs the fingerprint using error masks derived from a neural network to generate an adversarial fingerprint. Image quality assessment metrics applied to calculate the difference between the original and perturbed fingerprints include average difference, maximum difference, normalized absolute error, and peak signal to noise ratio. On the ATVS fingerprint dataset, the differences between these values in the original and corresponding perturbed fingerprint images are negligible. Further, the VeriFinger SDK is used to detect the minutiae and perform matching between the original and perturbed fingerprints. The matching score is above 250, which reinforces the fact that there is virtually no loss between the original and perturbed fingerprints.
0 Replies
Loading