REMem: Reasoning with Episodic Memory in Language Agent

ICLR 2026 Conference Submission8158 Authors

17 Sept 2025 (modified: 02 Dec 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: language agent, episodic memory, long-term memory
Abstract: Humans excel at remembering concrete experiences along spatiotemporal contexts and performing reasoning across those events, i.e., the capacity for episodic memory. In contrast, memory in language agents remains mainly semantic, and current agents are not yet capable of effectively recollecting and reasoning over interaction histories. We identify and formalize the core challenges of episodic recollection and reasoning from this gap, and observe that existing work often overlooks episodicity, lacks explicit event modeling, or overemphasizes simple retrieval rather than complex reasoning. We present REMem, a two-phase framework for constructing and reasoning with episodic memory: 1) Offline indexing, where REMem converts experiences into a hybrid memory graph that flexibly links time-aware gists and facts. 2) Online inference, where REMem employs an agentic retriever with carefully curated tools for iterative retrieval over the memory graph. Comprehensive evaluation across four episodic memory benchmarks shows that REMem substantially outperforms state-of-the-art memory systems such as Mem0 and HippoRAG 2, showing 3.4% and 13.4% absolute improvements on episodic recollection and reasoning tasks, respectively. Moreover, REMem also demonstrates more robust refusal behavior for unanswerable questions.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 8158
Loading