The Silent Prompt: Initial Noise as Implicit Guidance for Goal-Driven Image Generation

Published: 01 Jan 2024, Last Modified: 07 Apr 2025CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this work, we introduce NoiseQuery as a novel method for enhanced noise initialization in versatile goal-driven text-to-image (T2I) generation. Specifically, we propose to leverage an aligned Gaussian noise as implicit guidance to complement explicit user-defined inputs, such as text prompts, for better generation quality and controllability. Unlike existing noise optimization methods designed for specific models, our approach is grounded in a fundamental examination of the generic finite-step noise scheduler design in diffusion formulation, allowing better generalization across different diffusion-based architectures in a tuning-free manner. This model-agnostic nature allows us to construct a reusable noise library compatible with multiple T2I models and enhancement techniques, serving as a foundational layer for more effective generation. Extensive experiments demonstrate that NoiseQuery enables fine-grained control and yields significant performance boosts not only over high-level semantics but also over low-level visual attributes, which are typically difficult to specify through text alone, with seamless integration into current workflows with minimal computational overhead.
Loading