Keywords: Molecular modeling, Study of science of science/scientific methods, Molecular graph representation, multi-similarity learning, multimodal learning, contrastive learning, self-supervised learning, drug discovery
Abstract: Effective molecular representation learning is essential for molecular property prediction. Contrastive learning, a prominent self-supervised approach for molecular representation learning, relies on establishing positive and negative pairs. However, this binary similarity categorization oversimplifies the nature of complex molecular relationships and overlooks the degree of relative similarities among molecules, posing challenges to the effectiveness and generality of representation learning. In response to this challenge, we propose the Graph Multi-Similarity Learning for Molecular Property Prediction (GraphMSL) framework. GraphMSL incorporates a generalized multi-similarity metric in a continuous scale, capturing self-similarity and relative similarities. The unimodal multi-similarity metrics are derived from various chemical modalities, and the fusion of these metrics into a multimodal form significantly enhances the effectiveness of GraphMSL. In addition, the flexibility of fusion function can reshape the focus of the model to convey different chemical semantics. GraphMSL proves effective in drug discovery evaluations through various downstream tasks and post-hoc analysis of learnt representations. Its notable performance suggests significant potential for the exploration of new drug candidates.
Submission Number: 75
Loading