What Matters for Model Merging at Scale?

24 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: model merging, weight averaging, averaging, composition, modular model, generalization
Abstract:

Model merging aims to combine multiple expert models into a more capable single model, offering benefits such as reduced storage and serving costs, improved generalization, and support for decentralized model development. Despite its promise, previous studies have primarily focused on merging a few small models. This leaves many unanswered questions about the effect of scaling model size and how it interplays with other key factors—like the base model quality and number of expert models—, to affect the merged model’s performance. This work systematically evaluates the utility of model merging at scale, examining the impact of these different factors. We experiment with merging fully fine-tuned models using four popular merging methods—Averaging, Task Arithmetic, Dare-TIES, and TIES-Merging—across model sizes ranging from 1B to 64B parameters and merging up to 8 different expert models. We evaluate the merged models on both held-in tasks, i.e., the expert’s training tasks, and zero-shot generalization to unseen held-out tasks. Our wide range of experiments provide several new insights about model merging at scale and the interplay between different factors. First, we find that merging is more effective when experts are created from strong base models, i.e., models with good zero-shot performance, compared to pre-trained ones. Second, larger models facilitate easier merging. Third merging consistently improves generalization capabilities. Notably, when merging eight large expert models, the merged models often generalize better compared to the multitask trained models. Fourth, we can better merge more expert models when working with larger models. Fifth, different merging methods behave very similarly at larger scales. Overall, our findings shed light on some interesting properties of model merging while also highlighting some limitations. We hope that this study will serve as a reference point on large-scale merging for upcoming research.

Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3894
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview