Multiple Modes for Continual Learning

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: continual learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Adapting model parameters to incoming streams of data is a crucial factor to deep learning scalability. Interestingly, prior continual learning strategies in online settings inadvertently anchor their updated parameters to a local parameter subspace to remember old tasks, else drift away from the subspace and forget. From this observation, we formulate a trade-off between constructing multiple parameter modes and allocating tasks per mode. Mode-Optimized Task Allocation (MOTA), our contributed adaptation strategy, trains multiple modes in parallel, then optimizes task allocation per mode. We empirically demonstrate improvements over baseline continual learning strategies and across varying distribution shifts, namely sub-population, domain, and task shift.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8792
Loading