Directed Probabilistic WatershedDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Directed Graph, Matrix Tree Theorem, Semi-Supervised Learning, Watershed, Random Walker
Abstract: The Probabilistic Watershed is a semi-supervised learning algorithm applied on undirected graphs. Given a set of labeled nodes (seeds), it defines a Gibbs probability distribution over all possible spanning forests disconnecting the seeds. It calculates, for every node, the probability of sampling a forest connecting a certain seed with the considered node. We propose the "Directed Probabilistic Watershed", an extension of the Probabilistic Watershed algorithm to directed graphs. Building on the Probabilistic Watershed, we apply the Matrix Tree Theorem for directed graphs and define a Gibbs probability distribution over all incoming directed forests rooted at the seeds. Similar to the undirected case, this turns out to be equivalent to the Directed Random Walker. Furthermore, we show that in the limit case in which the Gibbs distribution has infinitely low temperature, the labeling of the Directed Probabilistic Watershed is equal to the one induced by the incoming directed forest of minimum cost. Finally, for illustration, we compare the empirical performance of the proposed method with other semi-supervised segmentation methods for directed graphs.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
TL;DR: Extension of the Probabilistic Watershed method to the directed setting
22 Replies