Graph Neural Networks Provably Benefit from Structural Information: A Feature Learning Perspective

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Graph Neural Network, Feature Learning, Graph Convolution, Deep Learning Theory
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Graph neural networks (GNNs) have shown remarkable capabilities in learning from graph-structured data, outperforming traditional multilayer perceptrons (MLPs) in numerous graph applications. Despite these advantages, there has been limited theoretical exploration into why GNNs are so effective, particularly from the perspective of feature learning. This study aims to address this gap by examining the role of graph convolution in feature learning theory under a specific data generative model. We undertake a comparative analysis of the optimization and generalization between two-layer graph convolutional networks (GCNs) and their convolutional neural network (CNN) counterparts. Our findings reveal that graph convolution significantly enhances the regime of low test error over CNNs. This highlights a substantial discrepancy between GNNs and MLPs in terms of generalization capacity, a conclusion further supported by our empirical simulations on both synthetic and real-world datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4120
Loading