Measure the Predictive HeterogeneityDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: data heterogeneity, predictive information, predictive heterogeneity
TL;DR: In this work, we propose the predictive heterogeneity to measure the data heterogeneity that affects prediction. Theoretical analysis and empirical results validate the rationality of the proposed measure.
Abstract: As an intrinsic and fundamental property of big data, data heterogeneity exists in a variety of real-world applications, such as in agriculture, sociology, health care, etc. For machine learning algorithms, the ignorance of data heterogeneity will significantly hurt the generalization performance and the algorithmic fairness, since the prediction mechanisms among different sub-populations are likely to differ. In this work, we focus on the data heterogeneity that affects the prediction of machine learning models, and first formalize the Predictive Heterogeneity, which takes into account the model capacity and computational constraints. We prove that it can be reliably estimated from finite data with PAC bounds even in high dimensions. Additionally, we propose the Information Maximization (IM) algorithm, a bi-level optimization algorithm, to explore the predictive heterogeneity of data. Empirically, the explored predictive heterogeneity provides insights for sub-population divisions in agriculture, sociology, and object recognition, and leveraging such heterogeneity benefits the out-of-distribution generalization performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
0 Replies