Exploring channel distinguishability in local neighborhoods of the model space in quantum neural networks

ICLR 2025 Conference Submission1364 Authors

17 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Quantum Machine Learning, Quantum Neural Network
Abstract: With the increasing interest in Quantum Machine Learning, Quantum Neural Networks (QNNs) have emerged and gained significant attention. These models have, however, been shown to be notoriously difficult to train, which we hypothesize is partially due to the architectures, called ansatzes, that are hardly studied at this point. Therefore, in this paper, we take a step back and analyze ansatzes. We initially consider their expressivity, i.e., the space of operations they are able to express, and show that the closeness to being a 2-design, the primarily used measure, fails at capturing this property. Hence, we look for alternative ways to characterize ansatzes, unrelated to expressivity, by considering the local neighborhood of the model space, in particular, analyzing model distinguishability upon small perturbation of parameters. We derive an upper bound on their distinguishability, showcasing that QNNs using the Hardware Efficient Ansatz with few parameters are hardly discriminable upon update. Our numerical experiments support our bounds and further indicate that there is a significant degree of variability, which stresses the need for warm-starting or clever initialization. Altogether, our work provides an ansatz-centric perspective on training dynamics and difficulties in QNNs, ultimately suggesting that iterative training of small quantum models may not be effective, which contrasts their initial motivation.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1364
Loading