Composing Unbalanced Flows for Flexible Docking and Relaxation

Published: 22 Jan 2025, Last Modified: 16 May 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: molecular docking, flow matching, structure relaxation, unbalanced transport
TL;DR: A new generalized flow matching paradigm and its applications to flexible docking and relaxation
Abstract:

Diffusion models have emerged as a successful approach for molecular docking, but they often cannot model protein flexibility or generate nonphysical poses. We argue that both these challenges can be tackled by framing the problem as a transport between distributions. Still, existing paradigms lack the flexibility to define effective maps between such complex distributions. To address this limitation, we propose Unbalanced Flow Matching, a generalization of Flow Matching (FM) that allows trading off sample efficiency with approximation accuracy and enables more accurate transport. Empirically, we apply Unbalanced FM on flexible docking and structure relaxation, demonstrating our ability to model protein flexibility and generate energetically favorable poses. On the PDBBind docking benchmark, our method FlexDock improves the docking performance while increasing the proportion of energetically favorable poses from 30% to 73%.

Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3566
Loading