Abstract: Selecting representative samples plays an indispensable role in many machine learning and computer vision applications under limited resources (e.g., limited communication bandwidth and computational power). Determinantal Point Process (DPP) is a widely used method for selecting the most diverse representative samples that can summarize a dataset. However, its adaptability to different tasks remains an open challenge, as it is challenging for DPP to perform task-specific tuning. In contrast, Rate-Distortion (RD) theory provides a way to measure task-specific diversity. However, optimizing RD for a data selection problem remains challenging because the quantity that needs to be optimized is the index set of the selected samples. To tackle these challenges, we first draw an inherent relationship between DPP and RD theory. Our theoretical derivation paves the way to take advantage of both RD and DPP for a task-specific data selection. To this end, we propose a novel method for task-specific data selection for multi-level classification tasks, named RD-DPP. Empirical studies on seven different datasets using five benchmark models demonstrate the effectiveness of the proposed RD-DPP method. Our method also outperforms recent strong competing methods, while exhibiting high generalizability to a variety of learning tasks. The source code is available on https://github.com/xiwencl/RD-DPP1.
Loading