Variational Recurrent Model for Session-based RecommendationOpen Website

Published: 01 Jan 2018, Last Modified: 12 May 2023CIKM 2018Readers: Everyone
Abstract: Session-based recommendation performance has been significantly improved by Recurrent Neural Networks (RNN). However, existing RNN-based models do not expose the global knowledge of frequent click patterns or consider variability of sequential behaviors in sessions. In this paper, we propose a novel Variational Recurrent Model (VRM), which employs the stochastic latent variable to capture the knowledge of frequent click patterns and impose variability for the sequential behavior modeling. A stochastic generative process of session sequence is specified, where the latent variable modulates the generation of session sequences in RNN. We further extend VRM to a Conditional Variational Recurrent Model (CVRM) by considering additional information (e.g., focused category in sessions) as the generative condition. When evaluated on a public benchmark dataset, VRM and its extension clearly demonstrate their superiority over popular baselines and state-of-the-art models.
0 Replies

Loading