Keywords: Computational optimal transport, numerical optimization, numerical linear algebra
TL;DR: A high-performing, high-precision, GPU-parallel optimal transport solver based on truncated Newton methods.
Abstract: Developing a contemporary optimal transport (OT) solver requires navigating trade-offs among several critical requirements: GPU parallelization, scalability to high-dimensional problems, theoretical convergence guarantees, empirical performance in terms of precision versus runtime, and numerical stability in practice. With these challenges in mind, we introduce a specialized truncated Newton algorithm for entropic regularized OT. In addition to proving that locally quadratic convergence is possible without assuming a Lipschitz Hessian, we provide strategies to maximally exploit the high rate of local convergence in practice. Our GPU-parallel algorithm exhibits exceptionally favorable runtime performance, achieving high precision orders of magnitude faster than many existing alternatives. This is evidenced by wall-clock time experiments on 4096-dimensional MNIST and color transfer problems. The scalability of the algorithm is showcased on an extremely large OT problem with $n \approx 10^6$, solved approximately under weak entopric regularization.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2216
Loading