ViPro: Enabling and Controlling Video Prediction for Complex Dynamical Scenarios using Procedural Knowledge

Published: 01 Jan 2024, Last Modified: 24 Feb 2025CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We propose a novel architecture design for video prediction in order to utilize procedural domain knowledge directly as part of the computational graph of data-driven models. On the basis of new challenging scenarios we show that state-of-the-art video predictors struggle in complex dynamical settings, and highlight that the introduction of prior process knowledge makes their learning problem feasible. Our approach results in the learning of a symbolically addressable interface between data-driven aspects in the model and our dedicated procedural knowledge module, which we utilize in downstream control tasks.
Loading