Abstract: To effectively solve challenging staff rerostering problems, we propose to enhance a large neighborhood search (LNS) with a machine learning guided destroy operator. This operator uses a conditional generative model to identify variables that are promising to select and combines this with the use of a special sampling strategy to make the actual selection. Our model is based on a graph neural network (GNN) and takes a problem-specific graph representation as input. Imitation learning is applied to mimic a time-expensive approach that solves a mixed-integer program (MIP) for finding an optimal destroy set in each iteration. An additional GNN is employed to predict a suitable temperature for the destroy set sampling process. The repair operator is realized by solving a MIP. Our learning LNS outperforms directly solving a MIP with Gurobi and yields improvements compared to a well-performing LNS with a manually designed destroy operator, also when generalizing to schedules with various numbers of employees.
External IDs:dblp:conf/cpaior/OberwegerRRH22
Loading