Improving the Sparse Structure Learning of Spiking Neural Networks from the View of Compression Efficiency

ICLR 2025 Conference Submission13685 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: spiking neural networks
Abstract: The human brain utilizes spikes for information transmission and dynamically reorganizes its network structure to boost energy efficiency and cognitive capabilities throughout its lifespan. Drawing inspiration from this spike-based computation, Spiking Neural Networks (SNNs) have been developed to construct event-driven models that emulate this efficiency. Despite these advances, deep SNNs continue to suffer from over-parameterization during training and inference, a stark contrast to the brain’s ability to self-organize. Furthermore, existing sparse SNNs are challenged by maintaining optimal pruning levels due to a static pruning ratio, resulting in either under or over-pruning. In this paper, we propose a novel two-stage dynamic structure learning approach for deep SNNs, aimed at maintaining effective sparse training from scratch while optimizing compression efficiency. The first stage evaluates the compressibility of existing sparse subnetworks within SNNs using the PQ index, which facilitates an adaptive determination of the rewiring ratio for synaptic connections based on data compression insights. In the second stage, this rewiring ratio critically informs the dynamic synaptic connection rewiring process, including both pruning and regrowth. This approach significantly improves the exploration of sparse structures training in deep SNNs, adapting sparsity dynamically from the point view of compression efficiency. Our experiments demonstrate that this sparse training approach not only aligns with the performance of current deep SNNs models but also significantly improves the efficiency of compressing sparse SNNs. Crucially, it preserves the advantages of initiating training with sparse models and offers a promising solution for implementing Edge AI on neuromorphic hardware.
Supplementary Material: pdf
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13685
Loading