Coherence-based Label Propagation over Time Series for Accelerated Active LearningDownload PDF

Published: 28 Jan 2022, Last Modified: 13 Feb 2023ICLR 2022 PosterReaders: Everyone
Keywords: active learning, time series, pseudo labeling
Abstract: Time-series data are ubiquitous these days, but lack of the labels in time-series data is regarded as a hurdle for its broad applicability. Meanwhile, active learning has been successfully adopted to reduce the labeling efforts in various tasks. Thus, this paper addresses an important issue, time-series active learning. Inspired by the temporal coherence in time-series data, where consecutive data points tend to have the same label, our label propagation framework, called TCLP, automatically assigns a queried label to the data points within an accurately estimated time-series segment, thereby significantly boosting the impact of an individual query. Compared with traditional time-series active learning, TCLP is shown to improve the classification accuracy by up to 7.1 times when only 0.8% of data points in the entire time series are queried for their labels.
One-sentence Summary: We present a novel label propagation framework for time-series active learning, TCLP, that fully takes advantage of the temporal coherence inherent in time-series data.
23 Replies