AIBench: Towards Scalable and Comprehensive Datacenter AI BenchmarkingOpen Website

2018 (modified: 08 Nov 2022)Bench 2018Readers: Everyone
Abstract: AI benchmarking provides yardsticks for benchmarking, measuring and evaluating innovative AI algorithms, architecture, and systems. Coordinated by BenchCouncil, this paper presents our joint research and engineering efforts with several academic and industrial partners on the datacenter AI benchmarks—AIBench. The benchmarks are publicly available from  http://www.benchcouncil.org/AIBench/index.html . Presently, AIBench covers 16 problem domains, including image classification, image generation, text-to-text translation, image-to-text, image-to-image, speech-to-text, face embedding, 3D face recognition, object detection, video prediction, image compression, recommendation, 3D object reconstruction, text summarization, spatial transformer, and learning to rank, and two end-to-end application AI benchmarks. Meanwhile, the AI benchmark suites for high performance computing (HPC), IoT, Edge are also released on the BenchCouncil web site. This is by far the most comprehensive AI benchmarking research and engineering effort.
0 Replies

Loading