On the Neural Tangent Kernel of Equilibrium ModelsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Equilibrium model, neural tangent kernel
Abstract: This work studies the neural tangent kernel (NTK) of deep equilibrium (DEQ) model, a practical ``infinite-depth'' architecture which directly computes the infinite-depth limit of a weight-tied network via root-finding. Even though the NTK of a fully-connected neural network is stochastic if its width and depth both tend to infinity simultaneously, we show that contrarily a DEQ model still enjoys a deterministic NTK despite its width and depth going to infinity at the same time. Moreover, such deterministic NTK can be found efficiently via root-finding.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
8 Replies

Loading