Abstract: In this paper, we present InstructABSA, Aspect Based Sentiment Analysis (ABSA) using the instruction learning paradigm for the ABSA subtasks: Aspect Term Extraction (ATE), Aspect Term Sentiment Classification (ATSC), and Joint Task modeling. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tunes the model (Tk-Instruct) the ABSA subtasks, yielding significant performance improvements. Experimental results on the Sem Eval 2014, 15, and 16 datasets demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on the three ABSA subtasks (ATE, ATSC, and Joint Task) by a significant margin, outperforming 7x larger models. In particular, InstructABSA surpasses the SOTA on the Rest14 ATE subtask by 5.69% points, Rest15 ATSC subtask by 9.59% points, and on the Lapt14 Joint Task by 3.37% points. Our results also suggest a strong generalization ability to new domains across all three subtasks
0 Replies
Loading