Discovering Mixtures of Structural Causal Models from Time Series Data

20 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Causal Discovery, Time Series, Bayesian Inference
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Causal discovery for time series with multiple Structural Causal Models
Abstract: In fields such as finance, climate science, and neuroscience, inferring causal relationships from time series data poses a formidable challenge. While contemporary techniques can handle non-linear relationships between variables and flexible noise distributions, they rely on the simplifying assumption that data originates from the same underlying causal model. In this work, we relax this assumption and perform causal discovery from time series data originating from mixtures of different causal models. We infer both the underlying structural causal models and the posterior probability for each sample belonging to a specific mixture component. Our approach employs an end-to-end training process that maximizes an evidence-lower bound for data likelihood. Through extensive experimentation on both synthetic and real-world datasets, we demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks, particularly when the data emanates from diverse underlying causal graphs. Theoretically, we prove the identifiability of such a model under some mild assumptions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2304
Loading