Parallel Computation Using Active Self-assemblyOpen Website

2013 (modified: 11 Nov 2021)DNA 2013Readers: Everyone
Abstract: We study the computational complexity of the recently proposed nubots model of molecular-scale self-assembly. The model generalizes asynchronous cellular automaton to have non-local movement where large assemblies of molecules can be moved around, analogous to millions of molecular motors in animal muscle effecting the rapid movement of large arms and legs. We show that nubots is capable of simulating Boolean circuits of polylogarithmic depth and polynomial size, in only polylogarithmic expected time. In computational complexity terms, any problem from the complexity class NC is solved in polylogarithmic expected time on nubots that use a polynomial amount of workspace. Along the way, we give fast parallel algorithms for a number of problems including line growth, sorting, Boolean matrix multiplication and space-bounded Turing machine simulation, all using a constant number of nubot states (monomer types). Circuit depth is a well-studied notion of parallel time, and our result implies that nubots is a highly parallel model of computation in a formal sense. Thus, adding a movement primitive to an asynchronous non-deterministic cellular automation, as in nubots, drastically increases its parallel processing abilities.
0 Replies

Loading