Learning Identity-Preserving Transformations on Data Manifolds

Published: 29 Mar 2023, Last Modified: 29 Mar 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Many machine learning techniques incorporate identity-preserving transformations into their models to generalize their performance to previously unseen data. These transformations are typically selected from a set of functions that are known to maintain the identity of an input when applied (e.g., rotation, translation, flipping, and scaling). However, there are many natural variations that cannot be labeled for supervision or defined through examination of the data. As suggested by the manifold hypothesis, many of these natural variations live on or near a low-dimensional, nonlinear manifold. Several techniques represent manifold variations through a set of learned Lie group operators that define directions of motion on the manifold. However, these approaches are limited because they require transformation labels when training their models and they lack a method for determining which regions of the manifold are appropriate for applying each specific operator. We address these limitations by introducing a learning strategy that does not require transformation labels and developing a method that learns the local regions where each operator is likely to be used while preserving the identity of inputs. Experiments on MNIST and Fashion MNIST highlight our model's ability to learn identity-preserving transformations on multi-class datasets. Additionally, we train on CelebA to showcase our model's ability to learn semantically meaningful transformations on complex datasets in an unsupervised manner.
Submission Length: Regular submission (no more than 12 pages of main content)
Changes Since Last Submission: Added clarifications throughout text as requested by reviewers, added section 4.3 on the benefit of transport operator augmentations for classification, and added Appendix E to analyze the effect of sparsity in the coefficients.
Code: https://github.com/Sensory-Information-Processing-Lab/manifold-autoencoder-extended
Assigned Action Editor: ~Frederic_Sala1
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 566