FineParser: A Fine-Grained Spatio-Temporal Action Parser for Human-Centric Action Quality Assessment
Abstract: Existing action quality assessment (AQA) methods mainly learn deep representations at the video level for scoring diverse actions. Due to the lack of a fine-grained understanding of actions in videos, they harshly suffer from low credibility and interpretability, thus insufficient for stringent applications, such as Olympic diving events. We argue that a fine-grained understanding of actions requires the model to perceive and parse actions in both time and space, which is also the key to the credibility and inter-pretability of the AQA technique. Based on this insight, we propose a new fine-grained spatial-temporal action parser named FineParser. It learns human-centric foreground action representations by focusing on target action regions within each frame and exploiting their fine-grained alignments in time and space to minimize the impact of in-valid backgrounds during the assessment. In addition, we construct fine-grained annotations of human-centric fore-ground action masks for the FineDiving dataset, called FineDiving-HM. With refined annotations on diverse target action procedures, FineDiving-HM can promote the development of real-world AQA systems. Through extensive experiments, we demonstrate the effectiveness of FineParser, which outperforms state-of-the-art methods while supporting more tasks of fine-grained action understanding. Data and code are available at https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024.
Loading