NoFunEval: Funny How Code LMs Falter on Requirements Beyond Functional Correctness

Published: 10 Jul 2024, Last Modified: 26 Aug 2024COLMEveryoneRevisionsBibTeXCC BY 4.0
Research Area: Evaluation, LMs with tools and code
Keywords: Code LMs, Non-Functional Requirements, Code Comprehension, Evaluation
TL;DR: Comprehensive evaluation of code language models on real-world code editing scenarios and metrics beyond functional correctness.
Abstract: Existing evaluation benchmarks of language models of code (code LMs) focus almost exclusively on whether the LMs can generate functionally-correct code. In real-world software engineering, developers think beyond functional correctness. They have requirements on "how'' a functionality should be implemented to meet overall system design objectives like efficiency, security, and maintainability. They would also trust the code LMs more if the LMs demonstrate robust understanding of such requirements. We propose a new benchmark NoFunEval to evaluate code LMs on non-functional requirements and simple classification instances for both functional and non-functional requirements. We propose a prompting method, Coding Concepts (CoCo), as a way for a developer to communicate the domain knowledge to the LMs. We conduct an extensive evaluation of twenty-two code LMs. Our finding is that they generally falter when tested on our benchmark, hinting at fundamental blindspots in their training setups. Surprisingly, even the classification accuracy on functional-correctness instances derived from the popular HumanEval benchmark is low, calling in question the depth of their comprehension and the source of their success in generating functionally-correct code in the first place. We release our benchmark and evaluation scripts publicly at https://aka.ms/NoFunEval.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 625
Loading