UniRAG: Unified Query Understanding Method for Retrieval Augmented Generation

ACL ARR 2025 February Submission2874 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Retrieval-Augmented Generation (RAG) technology effectively addresses the issues of knowledge update lag and hallucinations in large language models (LLMs) by integrating internal and external knowledge. Existing query augmentation methods improve RAG's performance in handling complex queries but face two key challenges: (1) the separation of query augmentation and encoding tasks, which hinders information sharing and introduces cumulative errors, and (2) the difficulty of selecting the optimal augmentation strategy for different scenarios. In this work, we propose UniRAG, a unified framework for query understanding in RAG. UniRAG employs a decoder-only LLM to jointly perform query augmentation and encoding, eliminating task separation. To facilitate adaptive query augmentation, we categorize existing techniques into query paraphrasing, query expansion, and query abstraction. Our model learns to select the optimal augmentation strategy based on user queries, leveraging retrieval and generation outputs as feedback. Experimental results show that UniRAG significantly outperforms traditional query augmentation methods in five knowledge-intensive benchmark tasks in both closed and open domain question answering.
Paper Type: Long
Research Area: Generation
Research Area Keywords: Generation,Information Retrieval and Text Mining
Contribution Types: NLP engineering experiment, Publicly available software and/or pre-trained models
Languages Studied: English
Submission Number: 2874
Loading