Sampling From Multiscale Densities With Delayed Rejection Generalized Hamiltonian Monte Carlo

Published: 22 Jan 2025, Last Modified: 10 Mar 2025AISTATS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We apply delayed rejection to generalized Hamiltonian Monte Carlo to simultaneously overcome its backtracking inefficiencies and sample from multiscale densities.
Abstract:

Hamiltonian Monte Carlo (HMC) is the mainstay of applied Bayesian inference for differentiable models. However, HMC still struggles to sample from hierarchical models that induce densities with multiscale geometry: a large step size is needed to efficiently explore low curvature regions while a small step size is needed to accurately explore high curvature regions. We introduce the delayed rejection generalized HMC (DR-G-HMC) sampler that overcomes this challenge by employing dynamic step size selection, inspired by differential equation solvers. In generalized HMC, each iteration does a single leapfrog step. DR-G-HMC sequentially makes proposals with geometrically decreasing step sizes upon rejection of earlier proposals. This simulates Hamiltonian dynamics that can adjust its step size along a (stochastic) Hamiltonian trajectory to deal with regions of high curvature. DR-G-HMC makes generalized HMC competitive by decreasing the number of rejections which otherwise cause inefficient backtracking and prevents directed movement. We present experiments to demonstrate that DR-G-HMC (1) correctly samples from multiscale densities, (2) makes generalized HMC methods competitive with the state of the art No-U-Turn sampler, and (3) is robust to tuning parameters.

Submission Number: 877
Loading