Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: robust meta-learning, unseen domain, robustness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a novel meta-adversarial multi-view representation learning framework that can learn transferable robustness across unseen tasks and domains with limited data.
Abstract: Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4386
Loading