Characterizing Multimodal Long-form Summarization: A Case Study on Financial Reports

Published: 10 Jul 2024, Last Modified: 26 Aug 2024COLMEveryoneRevisionsBibTeXCC BY 4.0
Research Area: Evaluation
Keywords: summarization, long-form, multimodal, extractiveness
TL;DR: We proposes a computational framework to characterize and evaluate the ability of large language models to summarize long, multimodal financial reports.
Abstract: As large language models (LLMs) expand the power of natural language processing to handle long inputs, rigorous and systematic analyses are necessary to understand their abilities and behavior. A salient application is summarization, due to its ubiquity and controversy (e.g., researchers have declared the death of summarization). In this paper, we use financial report summarization as a case study because financial reports are not only long but also use numbers and tables extensively. We propose a computational framework for characterizing multimodal long-form summarization and investigate the behavior of Claude 2.0/2.1, GPT-4/3.5, and Cohere. We find that GPT-3.5 and Cohere fail to perform this summarization task meaningfully. For Claude 2 and GPT-4, we analyze the extractiveness of the summary and identify a position bias in LLMs. This position bias disappears after shuffling the input for Claude, which suggests that Claude seems to recognize important information. We also conduct a comprehensive investigation on the use of numeric data in LLM-generated summaries and offer a taxonomy of numeric hallucination. We employ prompt engineering to improve GPT-4's use of numbers with limited success. Overall, our analyses highlight the strong capability of Claude 2 in handling long multimodal inputs compared to GPT-4. The generated summaries and evaluation code are available at https://github.com/ChicagoHAI/characterizing-multimodal-long-form-summarization.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 544
Loading