Nonlinear Laplacians: Tunable principal component analysis under directional prior information

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: principal component analysis, random matrix theory, spiked matrix models, low-rank estimation
TL;DR: We study a new class of spectral algorithms for low-rank estimation based on a tunable nonlinear deformation of an observed matrix.
Abstract: We introduce a new family of algorithms for detecting and estimating a rank-one signal from a noisy observation under prior information about that signal's direction, focusing on examples where the signal is known to have entries biased to be positive. Given a matrix observation $\mathbf{Y}$, our algorithms construct a *nonlinear Laplacian*, another matrix of the form $\mathbf{Y} + \mathrm{diag}(\sigma(\mathbf{Y1}))$ for a nonlinear $\sigma: \mathbb{R} \to \mathbb{R}$, and examine the top eigenvalue and eigenvector of this matrix. When $\mathbf{Y}$ is the (suitably normalized) adjacency matrix of a graph, our approach gives a class of algorithms that search for unusually dense subgraphs by computing a spectrum of the graph "deformed" by the degree profile $\mathbf{Y1}$. We study the performance of such algorithms compared to direct spectral algorithms (the case $\sigma = 0$) on models of sparse principal component analysis with biased signals, including the Gaussian planted submatrix problem. For such models, we rigorously characterize the strength of rank-one signal, as a function of the nonlinearity $\sigma$, required for an outlier eigenvalue to appear in the spectrum of a nonlinear Laplacian matrix. While identifying the $\sigma$ that minimizes the required signal strength in closed form seems intractable, we explore three approaches to design $\sigma$ numerically: exhaustively searching over simple classes of $\sigma$, learning $\sigma$ from datasets of problem instances, and tuning $\sigma$ using black-box optimization of the critical signal strength. We find both theoretically and empirically that, if $\sigma$ is chosen appropriately, then nonlinear Laplacian spectral algorithms substantially outperform direct spectral algorithms, while retaining the conceptual simplicity of spectral methods compared to broader classes of computations like approximate message passing or general first order methods.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 9424
Loading