Uncertainty-Aware Decoding with Minimum Bayes' Risk

ICLR 2025 Conference Submission1172 Authors

16 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: mbr, uncertainty, llms, decoding, machine translation, language generation, variational learning
TL;DR: We generalize MBR into an uncertainty-aware decoding method.
Abstract: Despite their outstanding performance in the majority of scenarios, contemporary language models still occasionally produce undesirable outputs, for example, hallucinated text. While such behaviors have previously been linked to uncertainty, there is a notable lack of methods that actively consider uncertainty during text generation. In this work, we show how Minimum Bayes’ Risk (MBR) decoding, a method that was originally designed to account for the imperfect nature of probabilistic language models, can be generalized into a principled uncertainty-aware decoding method. In short, we account for model uncertainty during decoding by incorporating a posterior over model parameters into MBR’s computation of expected risk. We show that this modified expected risk is useful for both choosing outputs and deciding when to abstain from generation. We benchmark different methods for learning posteriors and show that performance correlates with the diversity of the combined set of models’ predictions.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1172
Loading