Imagine That! Abstract-to-Intricate Text-to-Image Synthesis with Scene Graph Hallucination Diffusion
Keywords: Image Synthesis, Scene Graph, Diffusion Model
TL;DR: We solve the text-to-image synthesis under the abstract-to-intricate setting with a novel scene-graph hallucination mechanism with diffusion models.
Abstract: In this work, we investigate the task of text-to-image (T2I) synthesis under the abstract-to-intricate setting, i.e., generating intricate visual content from simple abstract text prompts. Inspired by human imagination intuition, we propose a novel scene-graph hallucination (SGH) mechanism for effective abstract-to-intricate T2I synthesis. SGH carries out scene hallucination by expanding the initial scene graph (SG) of the input prompt with more feasible specific scene structures, in which the structured semantic representation of SG ensures high controllability of the intrinsic scene imagination. To approach the T2I synthesis, we deliberately build an SG-based hallucination diffusion system. First, we implement the SGH module based on the discrete diffusion technique, which evolves the SG structure by iteratively adding new scene elements. Then, we utilize another continuous-state diffusion model as the T2I synthesizer, where the overt image-generating process is navigated by the underlying semantic scene structure induced from the SGH module. On the benchmark COCO dataset, our system outperforms the existing best-performing T2I model by a significant margin, especially improving on the abstract-to-intricate T2I generation. Further in-depth analyses reveal how our methods advance.
Supplementary Material: pdf
Submission Number: 2165
Loading