Abstract: In this paper, we study the problem of (finite sum) minimax optimization in the Differential Privacy (DP) model. Unlike most of the previous studies on the (strongly) convex-concave settings or loss functions satisfying the Polyak-Lojasiewicz condition, here we mainly focus on the nonconvex-strongly-concave one, which encapsulates many models in deep learning such as deep AUC maximization. Specifically, we first analyze a DP version of Stochastic Gradient Descent Ascent (SGDA) and show the utility bound in terms of the Euclidean norm of the gradient for the empirical risk function. We then propose a new method with less gradient noise variance and improve the upper bound to the best-known result for DP Empirical Risk Minimization with non-convex loss. We also discussed several lower bounds of private minimax optimization. Finally, experiments on AUC maximization, generative adversarial networks, and temporal difference learning with real-world data support our theoretical analysis.
Loading