Keywords: Backdoor learning, Diffusion model, AI security, Benchmark
Abstract: Backdoor learning is a critical research topic for understanding the vulnerabilities of deep neural networks. While the diffusion model (DM) has been broadly deployed in public over the past few years, the understanding of its backdoor vulnerability is still in its infancy compared to the extensive studies in discriminative models. Recently, many different backdoor attack and defense methods have been proposed for DMs, but a comprehensive benchmark for backdoor learning on DMs is still lacking. This absence makes it difficult to conduct fair comparisons and thoroughly evaluate existing approaches, thus hindering future research progress. To address this issue, we propose *BackdoorDM*, the first comprehensive benchmark designed for backdoor learning on DMs. It comprises nine state-of-the-art (SOTA) attack methods, four SOTA defense strategies, and three useful visualization analysis tools. We first systematically classify and formulate the existing literature in a unified framework, focusing on three different backdoor attack types and five backdoor target types, which are restricted to a single type in discriminative models. Then, we systematically summarize the evaluation metrics for each type and propose a unified backdoor evaluation method based on multimodal large language model (MLLM). Finally, we conduct a comprehensive evaluation and highlight several important conclusions. We believe that BackdoorDM will help overcome current barriers and contribute to building a trustworthy artificial intelligence generated content (AIGC) community. The codes are released in https://github.com/linweiii/BackdoorDM.
Code URL: https://github.com/linweiii/BackdoorDM
Primary Area: Datasets & Benchmarks for applications in computer vision
Submission Number: 1600
Loading