Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: protein language model, protein representation learning, immunogenicity prediction
TL;DR: We propose a protocol for deep learning-based immunogenicity prediction, covering dataset preparation, model construction, and evaluation through quantitative assessments and post-hoc analysis.
Abstract:

Immunogenicity prediction is a central topic in reverse vaccinology for finding candidate vaccines that can trigger protective immune responses. Existing approaches typically rely on highly compressed features and simple model architectures, leading to limited prediction accuracy and poor generalizability. To address these challenges, we introduce VenusVaccine, a novel deep learning solution with a dual attention mechanism that integrates pre-trained latent vector representations of protein sequences and structures. We also compile the most comprehensive immunogenicity dataset to date, encompassing over 7000 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors. Extensive experiments demonstrate that VenusVaccine outperforms existing methods across a wide range of evaluation metrics. Furthermore, we establish a post-hoc validation protocol to assess the practical significance of deep learning models in tackling vaccine design challenges. Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research. The implementation is at \url{https://github.com/songleee/VenusVaccine}.

Supplementary Material: pdf
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2576
Loading